Propensity for the air/water interface and ion pairing in magnesium acetate vs magnesium nitrate solutions: molecular dynamics simulations and surface tension measurements.

نویسندگان

  • Babak Minofar
  • Robert Vacha
  • Abdul Wahab
  • Sekh Mahiuddin
  • Werner Kunz
  • Pavel Jungwirth
چکیده

Molecular dynamics simulations in slab geometry and surface tension measurements were performed for aqueous solutions of magnesium acetate and magnesium nitrate at various concentrations. The simulations reveal a strong affinity of acetate anions for the surface, while nitrate exhibits only a very weak surface propensity, and magnesium is per se strongly repelled from the air/water interface. CH3COO- also exhibits a much stronger tendency than NO3- for ion pairing with Mg2+ in the bulk and particularly in the interfacial layer. The different interfacial behavior of the two anions is reflected by the opposite concentration dependence (beyond 0.5 M) of surface tension of the corresponding magnesium salts. Measurements, supported by simulations, show that the surface tension of Mg(NO3)2(aq) increases with concentration as for other inorganic salts. However, in the case of Mg(OAc)2(aq) the surface tension isotherm exhibits a turnover around 0.5 M, after which it starts to decrease, indicating a positive net solute excess in the interfacial layer at higher concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturati...

متن کامل

Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions fo...

متن کامل

Wettability alteration by magnesium ion binding in heavy oil/brine/chemical/sand systems—analysis of hydration forces

In laboratory sandpack tests for heavy oil recovery by alkaline flooding, it was found that wettability alteration of the sand had a significant impact on oil recovery. In this work, a heavy oil of 14 API was used to examine the effect of organic acids in the oil and water chemistry on wettability alteration. From interfacial tension measurements and sand surface composition analysis, it was c...

متن کامل

Ions at Aqueous Interfaces

Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close co...

متن کامل

On the nature of ions at the liquid water surface.

A qualitatively new understanding of the nature of ions at the liquid water surface is emerging. Traditionally, the characterization of liquid surfaces has been limited to macroscopic experimental techniques such as surface tension and electrostatic potential measurements, wherein the microscopic picture then has to be inferred by applying theoretical models. Because the surface tension of elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 32  شماره 

صفحات  -

تاریخ انتشار 2006